Substituted cyclopentadienyl complexes

II *. ${ }^{13} \mathrm{C}$ NMR spectra of some $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L}) \mathrm{I}\right]$ complexes

Laurence Carlton, Peter Johnston and Neil J. Coville ${ }^{\star}$
Department of Chemistry, University of the Witwatersrand, Johannesburg (Republic of South Africa)

(Received July 21st, 1987)

Abstract

The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of a series of complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L}) \mathrm{I}\right]$ ($\mathrm{L}=\mathrm{t}-\mathrm{BuNC}, \mathrm{P}(\mathrm{OMe})_{3}, \mathrm{PMe}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMePh}_{2}, \mathrm{PPh}_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$) have been recorded and the five cyclopentadienyl resonances assigned to ring carbon atoms by means of $\mathrm{C}-\mathrm{H}$ correlated spectra. It has been observed that the C atoms ortho to the ring methyl group ($\mathrm{C}(2)$ and $\mathrm{C}(5)$) as well as the quaternary C atom are always coupled to the ligand P atom. A correlation between the chemical shift difference $\Delta(C(2)-C(5))$ and the Tolman cone angle, θ, has also been established.

Introduction

Recently we reported on the synthesis and proton NMR spectra of a series of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L}) \mathrm{I}\right]$ (1) complexes [1] and observed a correlation of the chemical shift difference between the protons ortho to the methyl ring substituent and the Tolman cone angle, θ, [2] of the ligand L. NMR studies on cyclopentadienylmetal complexes, e.g. substituted ferrocene derivatives, have indicated that a correlation also exists between ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ ring resonances [3]. This suggested to us that a similar correlation might exist between the ${ }^{13} \mathrm{C}$ chemical shifts and Tolman cone angle, θ, for complexes 1 . We also wished to establish whether information on the conformations of the ligand set relative to the cyclopentadiene ring could be obtained from the ${ }^{13} \mathrm{C}$ spectral data. Herein we report on our measurement and interpretation of the ${ }^{13} \mathrm{C}$ spectra of our complexes.

[^0]Table 1
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L})\right]{ }^{a}$ complexes

L	Cyclopentadienyl ring ${ }^{\text {b,c }}$						$\Delta(\mathrm{C}(2)-\mathrm{C}(5))$	$\Delta(C(3)-C(4))$	$(\mathrm{C}(2)+\mathrm{C}(5)$)/2	$\mathrm{C}(3)+\mathrm{C}(4)) / 2$	$\begin{aligned} & \hline \theta^{d} \\ & \left({ }^{\circ}\right) \end{aligned}$
	Me	C(1)	C(2)	C(3)	C(4)	C(5)					
CO	13.41	102.55	84.61	81.92	81.92	84.61	0	0	84.61	81.92	-
t-BuNC ${ }^{\text {f }}$	13.92	98.86	83.57	81.35	79.70	80.97	2.6	1.7	82.17	80.50	68°
$\mathrm{P}(\mathrm{OMe})_{3}{ }^{8}$	13.84	98.55(2.6)	86.03(2.5)	82.16(0.2)	78.07	80.82(1.9)	5.2	4.1	83.42	80.10	107
$\mathrm{PMe}_{3}{ }^{\text {a }}$	14.32	94.17(2.5)	86.29(1.7)	79.00	77.14	79.57(1.5)	6.9	1.9	83.02	77.99	118
$\mathrm{PMe}_{2} \mathrm{Ph}^{i}$	13.91	97.07	86.26(1.8)	81.85	78.16	80.75(1.9)	5.5	3.7	83.51	80.00	122
$\mathrm{PMePh}_{2}{ }^{\text {j }}$	13.82	97.70(2.8)	87.23(1.6)	82.65	78.03	79.84(1.5)	7.4	4.6	83.54	80.33	136
PPh_{3}	14.05	98.58(2.4)	88.88(1.8)	83.88	79.04	78.34(1.2)	10.5	4.8	83.61	81.46	145
$\mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}{ }^{\text {k }}}$	13.72	94.30(2.3)	88.70(2.0)	81.43	76.39(0.5)	75.55(0.8)	13.2	5.0	82.15	78.89	170

Spectra recorded in $\mathrm{C}_{6} \mathrm{D}_{6} \cdot{ }^{6} \delta$ in ppm relative to $\mathrm{C}_{6} \mathrm{D}_{6}: J(\mathrm{P}-\mathrm{C})$ in Hz . ${ }^{\mathrm{c}}$ Ring positions indicated in Fig. 1. ${ }^{d}$ Tolman cone angle, θ; ref. 2. ${ }^{e}$ Fan angle; ref. 9 . $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNC} 30.42 ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNC} 5.8 ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNC}, 201.67 \mathrm{ppm} .{ }^{8} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3} 53.42(5.2) \mathrm{ppm} .{ }^{h} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3} 20.31(31.0) \mathrm{ppm} .{ }^{i} \mathrm{P}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Ph} 19.56(34.7), 19.00(29.7)$ ppm. ${ }^{J} \mathrm{PCH}_{3} \mathrm{Ph}_{2} 21.20(34.0) \mathrm{ppm} .{ }^{k} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ 39.33(17.5), 30.85(15.4), 28.01(9.4), 26.79 ppm .

Experimental

All compounds were prepared as reported previously [1]. NMR spectra were recorded on a Bruker AC 200 NMR spectrometer. C-H correlated spectra were obtained by routine procedures [4].

Results and discussion

The starting material $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{I}\right]$ used in this study contains an achiral Fe atom, and consequently three resonances are associated with the ring carbon atoms in the ${ }^{13} \mathrm{C}$ NMR spectrum $(\mathrm{C}(2)$ and $\mathrm{C}(5)$ as well as $\mathrm{C}(3)$ and $\mathrm{C}(4)$ are equivalent, Fig. 1). The signal from the quaternary carbon atom $C(1)$ carrying the methyl substituent is readily assigned from its downfield position (102.55 ppm) and its weak intensity [5]. The resonance at 84.61 ppm (Table 1) is assigned to $\mathrm{C}(2)$ (and $\mathrm{C}(5)$) since the C ring atoms ortho to $\mathrm{C}(1)$, which carry an electron-donating group, appears downfield of the C ring atoms meta to $\mathrm{C}(1)$ [6] (also see below).
$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{I}\right]$ can be made chiral by either replacing the Me group by a chiral group [7] or replacing a CO group by another ligand. In both instances all five ring C atoms become non-equivalent and this is confirmed by the ${ }^{13} \mathrm{C}$ data for the chiral complexes [$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L}) \mathrm{I}\right]\left(\mathrm{L}=\mathrm{t}-\mathrm{BuNC}, \mathrm{P}(\mathrm{OMe})_{3}, \mathrm{PMe}_{3}\right.$, $\left.\mathbf{P M e}_{2} \mathbf{P h}, \mathrm{PMePh}_{2}, \mathrm{PPh}_{3}, \mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right)$ given in Table 1.

Although the $\mathrm{C}(1)$ resonance is readily identified from its chemical shift and weak intensity, identification of the resonances $\mathbf{C}(2)-\mathbf{C}(5)$ is non-trivial. However, since the ring proton resonances have already been assigned from NOE difference spectra [1], C-H correlated (XHCORR) spectra were used to assign the ${ }^{13} \mathrm{C}$ ring resonances. An example, for $\mathrm{L}=\mathrm{PMePh}_{2}$, is shown in Fig. 2.

From the data listed in Table 1 the following generalisations can be made:
(i) $\mathrm{C}(2)$ is always downfield and coupled to the PR_{3} ligand [8]. Presumably this criterion can be used for assigning ${ }^{13} \mathrm{C}$ spectra of other complexes of 1 .
(ii) $\mathrm{C}(5)$ has a variable position but is always coupled to PR_{3} although the $J(\mathrm{P}-\mathrm{C})$ coupling is more variable than observed for $\mathrm{C}(2)$.
(iii) The average position of the ortho ring atoms $(\mathrm{C}(2)+\mathrm{C}(5))$ is downfield from the averaged positions of the meta $(\mathrm{C}(3)+\mathrm{C}(4))$ ring atoms. This is consistent with results obtained for achiral systems [6].
(iv) No trends are discernible which relate either the positions or $J(\mathrm{P}-\mathrm{C})$ coupling of $C(3)$ and $C(4)$ to ligand cone angles.
(v) The C ring methyl resonance is hardly affected by variations of L .

Assignment of the ring carbon resonances allows for the determination of Δ $(C(2)-C(5))$ and $\Delta(C(3)-C(4))$ (Table 1). It is clear that $\Delta(C(2)-C(5))$ varies

Fig. 1. Labelling scheme for the ring carbon atoms.

Fig. 2. $\mathrm{C}-\mathrm{H}$ correlated spectrum for $\left[\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PMePh}_{2}\right) \mathrm{I}\right]$.

Fig. 3. Plot of Tolman cone angle, θ, against $\Delta(\mathrm{C}(2)-\mathrm{C}(5))$ for the $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L}) \mathrm{I}\right]$ complexes
with the isocyanide fan angle [9] or Tolman cone angle, θ, [2] (Fig. 3), and that $\Delta(C(2)-C(5))>\Delta(C(3)-C(4))$. Similar observations were made for the ring proton resonances and presumably the same factors are responsible for both observations.

Originally we had thought that the observation of a larger ${ }^{31} \mathrm{P}$ coupling to $\mathrm{H}(3)$ and $\mathrm{H}(4)$ (than to $\mathrm{H}(2)$ and $\mathrm{H}(5)$) implied restricted rotation of the ligand set relative to the ring [1]. However the ${ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}$ coupling data show coupling only to $\mathrm{C}(1), \mathrm{C}(2)$ and $\mathrm{C}(5)$. It is noteworthy that ${ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}$ coupling has been observed for the quarternary ring atom in $\left[\left(\mathrm{i}-\mathrm{PrC}_{5} \mathrm{H}_{4}\right) \mathrm{Rh}\left(\mathrm{PPh}_{3}\right) \mathrm{I}_{2}\right]$, and that this coupling was suggested to arise from the ring acting as an allyl-ene ligand [10]. Although the same situation may occur in our complexes we have no physical data to support this proposal. The resolution of this problem must await structural data, and consequently our ${ }^{13} \mathrm{C}$ NMR results at present give no conformational information.

Acknowledgement

We wish to thank the FRD for financial assistance.

References

1 P. Johnston, M.S. Loonat, W.L. Ingham, L. Carlton and N.J. Coville, Organometallics, in press.
2 C.A. Tolman, Chem. Rev., 77 (1977) 313.
3 For e.g. see R.B. King and P.C. Lauterbur J. Am. Chem. Soc., 87 (1965) 3266.
4 E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, VCH, Weinheim, 1987, p. 92.
5 F.W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR spectra, Heyden, London, 1978, p. 24.

6 M.H. Chisholm and S. Godleski, Prog. Inorg. Chem., 20 (1976) 299.
7 (a) A.A. Nesmeyanov, G.B. Shul'pin, L.A. Federov, P.V. Petrovsky and M.I. Rybinskaya, J. Organomet. Chem., 69 (1974) 429 and references cited therein; (b) J.E. Shade and A. Wojcicki, J. Organomet. Chem., 319 (1987) 391.
8 The ${ }^{13} \mathrm{C}$ spectra of some related ruthenium complexes have been reported as being P coupled to the downfield C atom. See: (a) E. Cesarotti, M. Angoletta, N.P.C. Walker, M.B. Hursthouse, R. Vefghi, P.A. Schonland and C. White, J. Organomet Chem., 286 (1985) 343; (b) E. Cesarotti, A. Chiesa, G.F. Ciani, A. Sironi, R. Vefghi and C. White, J. Chem Soc., Dalton Trans., (1984) 653.
9 Y. Yamamoto, K. Aoki and H. Yamazaki, Inorg. Chem., 18 (1979) 1681.
10 Y. Wakatsuki, and H. Yamazaki, J. Organomet. Chem., 64 (1974) 393.

[^0]: * For Part I see Ref. 1.

